
卒業研究報告題目

医療資源管理のためのスマートマットを用いた
在庫管理システムの試作

Prototype Inventory Management System Using SmartMat
for Medical Resource Management

指導教員　田島　孝治　准教授

岐阜工業高等専門学校 電気情報工学科

　 2018E41　山中　鴻晟　

令和 5年（2023年）2月 17日提出

Abstract

In this study, we developed a prototype inventory management system for medical
resource management. The objective of this study is to develop an inventory manage-
ment system for medical resource management to reduce management costs, ordering
errors and the number of immovable inventory.

The developed system works as follows.
1. The user authenticates personally and brings in and out inventory.
2. Inventory detection hardware automatically detects inventory counts and records

them in an external database.
3. API retrieves inventory counts stored in an external database.
4. Inventory counts and transactions are recorded in an internal inventory manage-

ment database.
5. The inventory manager checks the inventory and places the appropriate order.
We evaluated the system in two ways. First, we measured the time it took from the

time the card was held up to the time the system responded to the inventory change,
varying the number of records. We found that increasing the number of records to
14,000 did not change the search time. We then measured the time from when the card
was held to when the system responded to the inventory change, varying the frequency
of requests per second. The results showed that the system operated normally up to a
maximum of 65 requests per second, confirming that the performance was sufficient for
practical use.

a

目次

1 はじめに 1
1.1 背景 . 1

2 関連技術 2
2.1 Docker . 2

2.1.1 Docker . 2
2.1.2 Docker Compose . 2

2.2 RFID . 2
2.2.1 RFID . 2
2.2.2 FeliCa . 2

2.3 Python . 3
2.4 Webアプリケーション . 3

2.4.1 HTML . 3
2.4.2 Bootstrap . 3
2.4.3 jQuery . 3
2.4.4 PHP . 3
2.4.5 データベース . 4
2.4.6 SQL . 4
2.4.7 API . 4
2.4.8 JSON . 4

3 研究概要 5
3.1 目的 . 5
3.2 システム概要 . 5

4 設計 7
4.1 設計方針 . 7
4.2 制限事項 . 7
4.3 在庫管理用データベース . 8
4.4 在庫管理用データベース操作 API . 10
4.5 個人認証モジュール . 10
4.6 スマートマット用データベース . 10
4.7 スマートマット API . 13

5 実装 14

b

5.1 開発環境 . 14
5.2 在庫管理用データベース . 14
5.3 在庫管理用データベース操作 API . 16
5.4 個人認証モジュール . 16
5.5 スマートマット用データベース . 16
5.6 スマートマット API . 20

6 評価 22
6.1 実験方法 . 22
6.2 実験結果・考察 . 23

6.2.1 評価実験の結果と考察 . 23
6.2.2 テーブル構造についての考察 . 23

7 まとめ 27
7.1 研究の成果 . 27
7.2 今後の課題 . 27

参考文献 28

謝辞 31

c

1 はじめに

1.1 背景

近年、医療技術の発展に伴い、医薬品をはじめとする多くの医療資源が開発され、利用されてい
る。医療資源は、種類や個数が膨大である。医療薬で言えば、医療用医薬品は約 14,000品目、一般
用医薬品だけでも約 11,400品目存在する [1]。また、医療用機器では、データベースに登録されて
いる件数が 100万件 [2]を大きく超えている。先に述べたような医療資源の特徴は、不動在庫の発
生や時間的・労力的な管理コストの増加の大きな原因となっている。不動在庫とは、長期間販売・
出荷・使用されずに残っている在庫のことであり、在庫の維持や処理のために多くの手間や費用が
かかるなどのデメリットが存在する。医薬品の廃棄に伴う損失額は全国の薬局だけで年間 100億円
にも達すると推定されており、院内処方の医薬品も加えると、100億円をはるかに超えると見込ま
れている [3]。不動在庫が発生する主な原因としては、過剰発注や発注不足といった発注ミスが挙
げられる。また、医療資源に対する管理コストの増加は、発注ミスへとつながりやすく、不動在庫
発生の可能性を上げてしまう。
不動在庫を減らすためには、発注ミスを減らすことのできる在庫管理システムが必要である。そ

こで本研究では、医療資源管理のための在庫管理システムを開発することにより、まずは医療資源
に対する管理コストの削減を目指す。管理コストを減少させることは発注ミスの抑制を実現し、さ
らには不動在庫数の減少にもつながる。従来の在庫管理システムでは、ハンディ端末でバーコード
を読み取ることなどにより在庫管理を行なっていたが、今回開発するシステムでは、ユーザが職員
証をカードリーダにかざしてから在庫を搬入出するだけで自動的に在庫数の更新ができるようにす
る。いつ誰がいくつの在庫を搬入出したかをリアルタイムに記録することにより、正確な在庫管理
を可能にする。ただし、在庫数を検知する部分については既製品を使用する。

1

2 関連技術

2.1 Docker

2.1.1 Docker
Docker は、コンテナ型の仮想環境を作成、配布、実行するためのプラットフォームである。

VirtualBoxなどの仮想マシンでは、ホストマシン上でハイパーバイザを利用してゲスト OSを動
かし、その上でミドルウェアなどを動かすのに対し、Dockerコンテナはホストマシンのカーネル
を利用し、プロセスやユーザなどを隔離することで、あたかも別のマシンが動いているかのように
動作させる。Dockerはミドルウェアのインストールや各種環境設定をコード化して管理するため、
ファイルを共有することで誰でも同じ環境が作れたり、環境の配布及びスクラップやビルドが容易
であったりする。開発工程の中で利用していた環境をそのまま本番環境に利用することも可能なた
め、環境差分が少なく、環境の問題を削減できる。[4]

2.1.2 Docker Compose
Docker で複数のコンテナを起動させる必要があるときには、各コンテナを起動させるために、

それぞれ起動コマンドやオプションを入力する必要がある。それに対し、Docker Composeでは、
Docker イメージのビルドや各コンテナ起動のオプションなどを含め、複数のコンテナの定義を
ymlファイルに書き、1つのコマンドで複数のコンテナを一度に操作することができる。そのため、
Docker Composeでは、複数の Dockerコンテナに関する複雑な手順を簡単化することができる。
[5]

2.2 RFID

2.2.1 RFID
RFIDは、電波を用いて RFタグを読み取ることでデータを読み書きするシステムである。電波

が届く範囲であれば、離れていても RFタグを読み取ることが可能であり、複数の RFタグを一括
でスキャンすることもできる。また、タグの表面が汚れていても読み取ることができる。[6], [7]

2.2.2 FeliCa
FeliCa は、ソニー株式会社が開発した非接触 IC カード技術方式であり、大きなくくりでは

RFIDの一種である。Suicaをはじめとする交通系 ICカードや、楽天 Edyなどの電子マネーなど
に採用されている。一枚のカードに ICチップとアンテナを搭載しており、約 0.1秒でデータの読
み書きができる。また、ISO/IEC 15408 EAL5+以上を取得しており、高レベルのセキュリティ
でカード内の情報を保護している。[8]

2

2.3 Python

Pythonは 1991年にオランダ人のグイド・ヴァンロッサムというプログラマによって開発され
たプログラミング言語である。オープンソースで運営されており、アプリケーションや人工知能の
開発、ビッグデータ解析などのさまざまな用途で使用されている。例えば、YouTubeや Instagram
のようなサービスでも Pythonが使われている。Pythonの特徴としては、簡潔で読みやすいプロ
グラムを書けることや、ライブラリが豊富にあることなどが挙げられる。[9], [10]

2.4 Webアプリケーション

2.4.1 HTML
HTMLとは、ハイパーテキスト・マークアップ・ランゲージ（Hyper Text Markup Language）

の略であり、Webページを作成するためのマークアップ言語である。マークアップとは、文章の
構成や文章の役割を示すという意味の言葉である。HTMLを記述することにより、文章構成をコ
ンピュータに指示することができる。[11], [12]

2.4.2 Bootstrap
Bootstrapとは、HTML/CSS/JavaScriptから構成されているWebフレームワークの 1つであ

る。Webページでよく使われるフォームやボタン、メニューなどがテンプレートとして用意され
ており、専門的な知識やスキルがなくてもデザイン性の高いWeb サイトを効率的に作成できる。
また、Bootstrapで開発したWebページは PCやスマートフォン、タブレットなどの端末ごとに
使いやすいレスポンシブデザインへの対応を自動的に行なってくれる。[13], [14]

2.4.3 jQuery
jQueryとは、JavaScriptのためのライブラリである。JavaScriptで複雑な記述が必要であった

部分でも、jQuery を使えば簡単に実装できるため、世界中のWeb デザイナやプログラマの間で
広く使われている。例えば、クリックすると画像が入れ替わるスライドショーや、マウスオーバー
した要素が動くなどギミックが実装できる。また、jQueryはクロスブラウザ設計のため、Google
Chromeや Safariなど、ブラウザによる処理方法の違いを気にすることなくコードを実行できる。
[15], [16]

2.4.4 PHP
PHPはサーバーサイドのスクリプト言語であり、処理はWebサーバ側で行われる。そのため、

PHPでは動的なWebページの開発が可能であり、例えば掲示板や問い合わせフォームなどを実装
できる。また、MySQLなどのデータベースとの連携が容易であることから、Webアプリケーショ
ンの開発に使用されることも多い。[17], [18]

3

2.4.5 データベース
データベースとは、構造化されたデータの集まりのことである。例えば顧客情報を「氏名」や

「電話番号」の項目ごとに整理するなど、データベースでは、大量にあるデータを検索・編集・共
有しやすいように保存できる。データを管理・参照する際には、操作性の向上のためにデータベー
ス管理システムを介してデータベースにアクセスする。データベース管理システムは、SQLと呼
ばれるデータベース言語を用いて操作する。[19], [20]

2.4.6 SQL
SQLは三つの言語に分けられる。一つ目はデータ定義言語である。データ定義言語では、デー

タベースやテーブルを作成したり、オブジェクト同士の関係を定義したりできる。二つ目はデータ
操作言語である。データ操作言語では、データベースを検索したり、データの更新や削除などを行
うことができる。三つ目はデータ制御言語である。データ制御言語では、トランザクションやデー
タへのアクセスを制御することができる。[21], [22]

2.4.7 API
APIは、ユーザからのリクエストに対して何らかのレスポンスをすることで、ソフトウェアやプ

ログラム同士をつなぐインタフェースとして機能している。APIを利用することのメリットの 1つ
として、他社のデータを利用できることが挙げられる。APIに適切なリクエストを送ることによっ
て必要な情報を取得することができるため、さまざまな分野へのデータの活用が見込まれる。[23]

2.4.8 JSON
JSONはもともと JavaScript上で値を扱うためのフォーマットであったが、バックエンドの普

及に伴い Pythonや PHPなどのさまざまな言語でサポートされるようになった。JSONは値と項
目のペアで定義するため、階層が深くなっても構造が直感的にわかりやすいという特徴がある。ま
た、JSON はテキスト量が少ないためデータを軽くしやすく、高速な通信を実現しやすい。[24],
[25]

4

3 研究概要

3.1 目的

本研究では、医療資源管理のための在庫管理システムの開発により、管理コストの削減、発注ミ
スの抑制、不動在庫数の減少の実現を目指す。具体的には、在庫数をリアルタイムに取得し、搬入
出の記録を残すことにより、いつ誰がその医療資源を持ち出したのかを把握できるシステムを目指
す。在庫数の検知にはスマートマットという製品の利用を想定している。スマートマットは重量セ
ンサを搭載した IoT機器であり、上に物を置くだけで残量を自動計測することができる。検知した
在庫数はスマートマットクラウドに自動的に保存される仕組みとなっている。スマートマットは製
品の性質上、外部ネットワークに接続する必要がある。
ここで課題となるのが、システム導入の容易化とデータの安全性の確保である。システム導入の

容易化では、可能な限り普段の業務を妨げないようにすることが大切である。また、既存の製品で
あるスマートマットとどのように連携するかが重要となってくる。データの安全性の確保では、個
人情報や薬品の情報など、外部に流出してはいけない情報を扱うため、データの安全性を高める必
要がある。

3.2 システム概要

本研究で作成するシステムの概要を Fig. 3.1に示す。

User

Stock
Manager

Personal
Authentication

Module

Medical
Resource

Hardware for Stock
Management

SmartMat Cloud

DatabaseWeb Browser API for Stock
Management

Record Stock

Check Stock

Check Stock

Scan ID Card

Call API Change and Check
Stock

Fig. 3.1. The system overview.

5

システムは、具体的には、次のような流れで動作する。

1. ユーザ（看護師や医師、納入業者）が個人認証と入出庫をする。
2. 在庫検知用ハードウェアが在庫数を自動検知し外部データベース（スマートマットクラウ
ド）に記録する。

3. APIが外部データベースに自動保存された在庫数を取得する。
4. 在庫管理用データベースに在庫数やトランザクションを記録する。
5. 在庫管理者が在庫を確認し、適切な発注をする。

6

4 設計

4.1 設計方針

本システムは「ユーザが普段の業務の流れの中で在庫を取り出す際に職員証をカードリーダにか
ざすだけで適切な在庫管理を実現する」という設計方針のもと設計を行った。システム全体は、次
の 5つの要素から構成される。

1. 医療資源の在庫を管理するためのデータベース（在庫管理用データベース）
2. 在庫管理用データベースを操作するための API（在庫管理用データベース操作 API）
3. ユーザを識別するための仕組み（個人認証モジュール）
4. 自動検知された在庫数を記録するためのデータベース（スマートマット用データベース）
5. スマートマット用データベースを操作するための API（スマートマット API）

さらに、システムを内部ネットワークと外部ネットワークに分ける。内部ネットワークには、在庫
管理用データベースと在庫管理用データベース操作 APIが、外部ネットワークにはスマートマッ
ト用データベースとスマートマット APIを接続する。今回は、Dockerを利用して仮想環境を構築
し、その仮想環境の中に在庫管理用データベース及び在庫管理用データベース操作 API を置く。
それにより、在庫管理用データベース及び在庫管理用データベース操作 APIをネットワーク的に
独立させ、データの漏洩を防ぎ、安全性を高める。また、Dockerによる内部ネットワークの仮想
化によって、物理的なサーバやネットワークの設置・維持にかかる費用を削減することができるた
め、資金力のない小規模の病院での利用も実現する。スマートマット APIはグローバル IPを持た
せた仮想マシン上に設置し、内部ネットワークとは別の独立した環境として動作させる。

4.2 制限事項

今回のシステム開発では、スマートマットの代わりに、スマートマットクラウドを模したデータ
ベース（スマートマット用データベース）と、スマートマットクラウドから在庫数を取得するス
マートマット API を開発する。つまり、スマートマット API は内部ネットワークと外部ネット
ワーク間のインタフェースとして実装する。このようにすることで、スマートマットクラウドの仕
様に変更があった時でも、インタフェースであるスマートマット APIの実装を変更するだけで対
応可能となる。
また、本システムでは、個人認証のためにカードキーを利用する。今回は、岐阜工業高等専門学

校の学生証（FeliCa対応）を利用し、学生証の中に格納されている学籍番号のデータを用いて個人
を特定する。カードキーは職員証として利用されており、ユーザ側の動作はカードをかざすだけで
あるため、使用上の負担が少ないことがメリットである。

7

4.3 在庫管理用データベース

在庫管理用データベースは、医療資源の名前や在庫数、部屋名、ユーザ、スマートマットの情報を
持たせる。在庫管理用データベースは、Items、Rooms、Stocks、Users、Smartmats、Transactions
というテーブルを持たせる。Itemsテーブルの構造を Table. 4.1に示す。Itemsテーブルには、医
薬品などの医療資源の情報を保存する。Roomsテーブルの構造を Table. 4.2に示す。Roomsテー
ブルには、部屋の名前を保存する。Stocksテーブルの構造を Table. 4.3に示す。Stocksテーブル
には、スマートマットの IDと在庫数の情報を保存する。Usersテーブルの構造を Table. 4.4に示
す。Usersテーブルには、ユーザ名を保存する。内部データベース内の Smartmatsテーブルの構造
を Table. 4.5に示す。Smartmatsテーブルには、smartmat_id、item_id、room_idの情報を保
存する。Transactionsテーブルの構造を Table. 4.6に示す。Transactionsテーブルには、トラン
ザクションの情報を保存する。具体的には、ユーザ名と行なわれた操作のタイプに加え、医療資源
の ID、部屋 ID、在庫数を保存することで、操作した人と内容を保存する。在庫管理用データベー
ス操作 APIは内部ネットワーク内に置き、外部からはアクセスできないようにすることでデータ
の安全性を高める。

Table 4.1. The data structure of Items table.

Data Type Description
item_id bigint item id
item_name varchar item name
created_at datetime created time
updated_at datetime updated time

Table 4.2. The data structure of Rooms table.

Data Type Description
room_id bigint room id
room_name varchar room name
created_at datetime created time
updated_at datetime updated time

8

Table 4.3. The data structure of Stocks table.

Data Type Description
smartmat_id bigint smartmat id
stock smallint number of stocks
created_at datetime created time
updated_at datetime updated time

Table 4.4. The data structure of Users table.

Data Type Description
user_id bigint user id
user_name varchar user name
registered_at datetime registered time

Table 4.5. The data structure of Smartmats table in the internal network.

Data Type Description
id bigint id
smartmat_id bigint smartmat id
item_id bigint item id
room_id bigint room id
created_at datetime created time
updated_at datetime updated time

Table 4.6. The data structure of Transactions table.

Data Type Description
transaction_id bigint transaction id
user_id varchar user id (student id)
type varchar transaction type
item_id bigint item id
room_id bigint room id
stock smallint number of stocks
transacted_date datetime transacted date
memo text memo

9

4.4 在庫管理用データベース操作 API

在庫管理用データベース操作 APIは、在庫管理用データベースを操作するための APIであり、
病院内の医療資源の在庫や、搬入出の記録のために利用される。Items、Rooms、Stocksテーブル
用の APIには、データの追加、変更、確認、削除の機能を持たせる。Users、Smartmatsテーブル
用の APIには、データの追加、確認、削除の機能を持たせる。Transactionsテーブル用の APIに
は、データの追加と確認の機能を持たせる。また、item_idや room_id、stockの情報を持たせる
ことで、どの医薬品がどの部屋から何個持ち出されたのかを特定できるようにした。
在庫管理用データベース操作 APIの動作の流れを次に示す。

• 個人認証モジュールからユーザ情報を受け取る。
• スマートマット APIにアクセスし、スマートマット用データベース（スマートマットクラ
ウド）から在庫数を取得する。

• 在庫管理用データベースに在庫数とトランザクション（誰が何をいくつ入出庫したのか）を
記録する。

在庫管理用データベース操作 APIのフローチャートを Fig. 4.1に示す。

4.5 個人認証モジュール

個人認証モジュールはユーザを識別するためのモジュールである。ユーザの識別により、誰が搬
入出したかを記録し特定できるようにする。本研究では RFID により個人認証を行うことを想定
しており、ICカードリーダを用いてカード内の情報を読み取る。今回は、岐阜工業高等専門学校
の学生証をカードキーとして用いる。学生証の中には一意な値として学籍番号が格納されているた
め、ユーザの識別には学籍番号を利用する。個人認証モジュールは内部ネットワーク内に置く。
個人認証モジュールの動作の流れを次に示す。

• 学生証がカードリーダにかざされるのを待つ。
• 学生証からユーザ情報（学籍番号）を読み取る。
• 在庫管理用データベース操作 APIにユーザ情報を渡す。

個人認証モジュールのフローチャートを Fig. 4.2に示す。

4.6 スマートマット用データベース

外部データベース内の Smartmats テーブルの構造を Table. 4.7 に示す。スマートマット用
データベースは、スマートマットクラウドを模したデータベースであり、Smartmatsテーブルに
smartmat_idと stockのカラムを持っている。このデータベースは、スマートマットにより自動
検知されたと想定される在庫数を記録するために利用する。今回は、Webページ上から手動で在

10

Start

Receive user information
(student ID)

Call SmartMat API
to get stock counts

Record stock counts
in a database for stocks

Record transaction

End

Fig. 4.1. The flowchart of database manipulation API for stock management.

庫数を変更できるようにする。スマートマット APIは外部ネットワークと繋がっているスマート
マットから内部ネットワーク内に存在しているデータベースへと在庫数を伝えるための役割を担っ
ている。具体的には、スマートマットによってスマートマットクラウド上に記録された残量を取得
した後、データベースを操作するための APIにアクセスすることで内部データベースの情報を書
き換える。スマートマット APIも外部ネットワーク上に置く。スマートマット APIは在庫管理用
データベース操作 APIから呼び出されたときのみ、内部ネットワークと通信を行う。

11

ID card is held over
the card reader

Stand by with
the card reader activated

Start

NO

Read user information
(student ID) from ID card

Send user information to
 database manipulation API

for stock management

End

YES

Fig. 4.2. The flowchart of personal authentication module.

Table 4.7. The data structure of Smartmats table in the external network.

Data Type Description
smartmat_id bigint smartmat id
stock smallint number of stocks
created_at datetime created time
updated_at datetime updated time

12

4.7 スマートマット API

スマートマット APIは、スマートマット用データベースを操作するための APIであり、スマー
トマット用データベース上の在庫数を更新したり、確認したりするために利用する。Webページ
上から在庫数を変更するリクエストが送られてきた際には、スマートマット用データベースの在庫
数を変更する。また、在庫数の確認では、在庫数をスマートマット用データベースから取得し、内
部ネットワーク内のデータベースに伝える役割を担う。この APIにはデータの追加、変更、確認、
削除の機能を持たせる。
在庫確認リクエストを受け取った際のスマートマット APIの動作の流れを次に示す。

• 在庫管理用データベース操作 APIからのリクエストを受け取る。
• スマートマット用データベースから在庫数を取得する。
• 在庫管理用データベース操作 APIへ在庫数を返信する。

スマートマット APIのフローチャートを Fig. 4.3に示す。

Start

Receive requests from
database manipulation API
for inventory management

Get stocks from the database
for SmartMat

Respond to stocks to
 database manipulation API

for stock management

End

Fig. 4.3. The flowchart of SmartMat API.

13

5 実装

5.1 開発環境

本システムの開発環境を以下に示す。仮想環境の構築のために Dockerを使用した。また、NFC
タグを読み込むための Pythonライブラリとして、nfcpyを利用した。

• OS : macOS Monterey 12.1
• 言語 : HTML, CSS, JavaScript, Python, PHP
• 仮想化ソフトウェア : Docker 20.10.14

5.2 在庫管理用データベース

在庫管理用データベースに実装した Items テーブルの構造を Fig. 5.1 に、Rooms テーブルの
構造を Fig. 5.2 に、Stocks テーブルの構造を Fig. 5.3 に、Users テーブルの構造を Fig. 5.4 に、
Smartmatsテーブルの構造を Fig. 5.5に、Transactionsテーブルの構造を Fig. 5.6に示す。ここ
で、Stocksテーブルと Smartmatsテーブルの smartmat_idカラムが AUTO_INCREMENTに
なっていないのは、スマートマットクラウド上に登録されているスマートマット IDを、内部ネッ
トワーク上のデータベースに反映させるためである。

Fig. 5.1. The data structure of Items table.

Fig. 5.2. The data structure of Rooms table.

14

Fig. 5.3. The data structure of Stocks table.

Fig. 5.4. The data structure of Users table.

Fig. 5.5. The data structure of Smartmats table in the internal network.

Fig. 5.6. The data structure of Transactions table.

15

5.3 在庫管理用データベース操作 API

http://localhost/stock/change に HTTP リクエストが来ると、在庫管理用データベース操作
APIが動作する。stock/change.phpのフローチャートを Fig. 5.7に示す。リクエストを受け取る
と、初めに必要な情報が全て送られているかを確認する。データが 1つでも欠けていた場合は、リ
クエスト元にエラーを返す。次に、データベースへと接続し、データベース上に該当するスマート
マットとユーザが存在しているかを確認する。スマートマットまたはユーザが存在しなかった場合
は、リクエスト元にエラーを返す。データベース上に該当するスマートマットとユーザの存在を確
認した後は、データベース上の在庫数を更新し、その旨をリクエスト元に返信する。最後に、誰が
いつ在庫を更新したかをログとして記録し、処理を終了する。

5.4 個人認証モジュール

非接触 IC カードリーダ/ライタである PaSoRi RC-S380 を用いて ID カード内の情報を読
み取る。card_reader.py を実行し、カードリーダに学生証をかざすことで、学籍番号を取得す
ることができる。card_reader.py のフローチャートを Fig. 5.8 に示す。カードがかざされる
と、card_reader.pyは http://localhost/mainに POSTでリクエストを行い、レスポンスを受け
取ったらその結果をコンソールに出力する。リクエストの際には、取得した学籍番号のデータを
main.php へと渡す。main.php では、スマートマット API と在庫管理用データベース操作 API
に HTTP リクエストを行うことで、在庫数の取得と、取得した在庫数の反映を実現させている。
main.phpのフローチャートを Fig. 5.9に示す。main.phpでは、card_reader.pyから受け取った
学籍番号を利用し、smartmat/check に POST リクエストを行う。smartmat/check からのレス
ポンスで在庫数を取得すると、stock/change に POST リクエストを行う。stock/change からの
レスポンスを受け取ると、card_reader.pyにレスポンスを返す。

5.5 スマートマット用データベース

スマートマットは既製品を使用することを想定しているため、実装していない。今回は、Web
ページ上から手動で在庫数を変更することによって、スマートマットにより在庫が自動計測された
とみなす。実装したWebページを Fig. 5.10に示す。在庫の変更をするためには、「在庫数の変更」
というラジオボタンを選択し、smartmat_idと change_toにそれぞれ値を入力してから「CALL
API」ボタンを押す。処理結果は「response」の欄に表示される。また、スマートマット用データ
ベースに実装した Smartmatsテーブルの構造を Fig. 5.11に示す。

16

Start

Connect to database

Update stock count

End

Response error
to main.php

Response to main.php
that the stock count
has been changed

Log stock changes

Response error
to main.php

Receive SmartMat ID,
stock count and user

information from main.php
NO

YES

SmartMat correcponding
to the received SmartMat ID

exists in the database

User corresponding to
the received user information

exists in the database

Response error
to main.php

YES

YES

NO

NO

Fig. 5.7. The flowchart of when stock/change.php is accessed.

17

Start

Run card_reader.py

POST request to main.php

End

ID card is held over
the card reader

YES

Stand by with
the card reader activated

NO

Receive and output
responses

Fig. 5.8. The flowchart of card_reader.py.

18

Start

POST request to SmartMat
API (smartmat/check)

POST request to database
manipulation API for stock

management (stock/change)

End

Receive resopnse
and get stock counts

Receive a response

Return response to
card_reader.py

Receive user
information (student ID)

from card_reader.py

YES

NO

Fig. 5.9. The flowchart of main.php.

19

Fig. 5.10. The web page for changing stocks.

Fig. 5.11. The data structure of Smartmats table in the external network.

5.6 スマートマット API

スマートマット API では、https://smartmat.db0.jp/smartmat/check にリクエストが来る
と、送られた smartmat_idに対応する在庫数をレスポンスする。smartmat/check.phpのフロー
チャートを Fig. 5.12に示す。リクエストが来ると、初めにスマートマット IDと新規在庫数と学
籍番号が送られてきたかを確認する。もし送られてきていない場合には、リクエスト元にエラーを
返す。全ての値を受け取っていたらデータベースに接続し、受け取ったスマートマット IDに該当
するスマートマットがデータベース上に存在しているかどうかを確認する。もし該当するスマー
トマットが存在していない場合には、その旨を返信する。受け取った学籍番号に該当するユーザが
データベース上に存在しているか確認し、存在していたらデータベースの在庫数を更新する。もし

20

ユーザが存在していない場合には、その旨を返信する。その後、リクエスト元にレスポンスを返し、
在庫変更のログを記録し、処理を終了する。

Start

End

Response to stock count
to main.php

Receive SmartMat ID
from main.php

Get stock counts on the
SmartMat corresopnding to
the received SmartMat ID

Connect to database

Get stock counts
for all SmartMats

YES

NO

Fig. 5.12. The flowchart of when smartmat/check.php is accessed.

21

6 評価

6.1 実験方法

今回作成したシステムの性能評価として、カードがかざされてから在庫の変更をレスポンスする
まで（main.phpで行う処理）にかかる時間の変化を計測する。今回の評価実験では、在庫管理用
データベース操作 APIの性能評価を主とするが、在庫管理用データベース操作 APIにはスマート
マット APIのリクエスト処理が含まれているため、実験結果は、スマートマット APIの処理性能
による影響を受ける可能性がある。なお、カードをかざしたときに取得するユーザ情報である職員
番号（学籍番号）は固定とする。変化させるパラメータを Table. 6.1 に示す。また、実験環境を
Table. 6.2に示す。

Table 6.1. Parameters used in evaluation experiments.

Experiment No. Number of records Frequency of requests
1 500 to 14,000, Increase by 500 10
2 14,000 5 to TIMEOUT, Increase by 5

Table 6.2. The experimental environment.

OS macOS Monterey 12.1
CPU Apple M1

Memory 16GB
Load Testing Tool Vegeta 12.8.4

1 つ目の実験では、外部データベースの Smartmats テーブルと、内部データベースの Stocks
テーブルのレコード数を変化させながら、一連の処理にかかる時間を計測する。レコード数は、500
から 14,000まで 500ずつ変化させる。なお、1秒間のリクエスト数は 10とする。ここで、14,000
という数は、文献 [1]で示された医療用医薬品の品目数を参考にしている。この実験では、レコー
ド数が多くなるほど、つまり扱う薬品数が多くなるほど、在庫取得のための検索スピードが遅くな
るのではないかという予想を立てた。

2つ目の実験では、1秒間のリクエスト数を変化させながら、一連の処理にかかる時間を計測す
る。1秒間のリクエスト数は、5から 5ずつ増やしていく。なお、レコード数は 14,000とする。こ
の実験では、どれだけの数の処理を同時に行うことができるのかを検証する。

22

6.2 実験結果・考察

6.2.1 評価実験の結果と考察
1つ目の実験の結果を Table. 6.3と Fig. 6.1に示す。Fig. 6.1は、Table. 6.3の結果からレコー

ドの数と待ち時間の値を取り出し、グラフにしたものである。Fig. 6.1を見ると、レコードの数を
増やしていったとしても、待ち時間は 100msから 150msの間に収まっていることがわかる。つま
り、14,000品目の医療用医薬品を扱うデータベースでは、レコードの数による待ち時間の変化はあ
まりないといえる。レコードを変化させたときの待ち時間の最大値は、129.152msであった。この
実験では 1秒間のリクエスト数を 10としているため、待ち時間を約 130msとすると、1リクエス
トあたり 13msかかることになる。したがって、1秒間に行える最大リクエスト数は 76リクエス
トとなる。

2 つ目の実験の結果を Table. 6.4 と Fig. 6.2 に示す。Fig. 6.2 は、Table. 6.4 の結果からリク
エストの数と待ち時間の値を取り出し、グラフにしたものである。Fig. 6.2 を見ると、どの点も
100msから 150msの間に収まっていることがわかる。リクエスト数が 65を超えると、タイムアウ
トした。この結果から、理論的な最大リクエスト数は 76リクエストとなるが、実際には 65が最大
リクエスト数となった。理論値と実測値のギャップについては、実際の通信状況により発生したも
のであると考えられる。1つの病院内で 1秒間に行われるリクエスト数はどちらの値よりも少ない
と考えられるため、実用には十分耐えうる性能であるといえる。

6.2.2 テーブル構造についての考察
今回は実装の順番上、設計で示したようなテーブル構造となったが、処理スピードの最大化の

ためにはテーブル構造を見直す必要があると考えられる。データの整合性を取りやすくなったり、
SQL文の用途がわかりやすくなったりすると考えられるテーブル構造を Fig. 6.3に示す。Fig. 6.3
では、外部キーを利用して親子関係を明確化したり、各テーブルの要素名をわかりやすくしたりし
た。特に、データの整合性が取りやすくなることは、データの冗長化を排除するために有効であり、
より良い処理スピードを実現できると考えられる。

23

Table 6.3. The relationship between the number of records and time.

Duration
Number of records Total [ms] Attack [ms] Wait [ms]

500 5025 4899 126.545
1000 5009 4898 110.792
1500 5011 4900 111.352
2000 5022 4899 123.219
2500 5029 4900 129.152
3000 5029 4900 128.857
3500 5006 4900 106.404
4000 5013 4899 113.314
4500 5020 4900 119.757
5000 5028 4899 129.076
5500 5029 4900 128.662
6000 5009 4899 109.775
6500 5010 4900 110.459
7000 5006 4900 106.197
7500 5005 4900 105.477
8000 5020 4900 120.743
8500 5013 4899 114.437
9000 5021 4899 121.052
9500 5007 4900 107.304

10000 5029 4900 129.125
10500 5024 4900 124.323
11000 5023 4900 123.386
11500 5017 4901 116.108
12000 5011 4900 110.465
12500 5022 4900 122.639
13000 5029 4901 128.258
13500 5027 4899 127.161
14,000 5012 4899 112.253

24

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000 14000

w
ai

tin
g

tim
e

[m
s]

Number of records

Fig. 6.1. The relationship between the number of records and time.

Table 6.4. The relationship between the frequency of requests and time.

Duration
Frequency of requests Total [ms] Attack [ms] Wait [ms]

5 4920 4800 120.362
10 5016 4900 116.338
15 5051 4933 117.989
20 5059 4950 109.124
25 5072 4959 112.866
30 5075 4966 109.048
35 5086 4971 115.371
40 5088 4974 113.303
45 5080 4978 101.801
50 5092 4980 112.803
55 5094 4982 112.371
60 5101 4983 118.308
65 5109 4985 124.749

25

0

50

100

150

200

250

300

350

400

450

500

5 15 25 35 45 55 65

w
ai

tin
g

tim
e

[m
s]

Frequency of requests [requests/second]

Fig. 6.2. The relationship between the frequency of requests and time.

smartmat

smartmats

id INT

stock INT

created_at VARCHAR(45)

updated_at VARCHAR(45)

Indexes

fyp

rooms

id INT

name VARCHAR(45)

created_at DATETIME

udpated_at DATETIME

Indexes

smartmats

id INT

room_id INT

ex_smartmat_id INT

created_at DATETIME

udpated_at DATETIME

Indexes

items

id INT

room_id INT

smartmat_id INT

name VARCHAR(45)

stock INT

created_at DATETIME

updated_at DATETIME

Indexes

users

id INT

name VARCHAR(45)

created_at DATETIME

Indexes

logs

id INT

item_id INT

user_id INT

stock INT

created_at DATETIME

Indexes

smartmats

id INT

stock INT

created_at VARCHAR(45)

updated_at VARCHAR(45)

Indexes

rooms

id INT

name VARCHAR(45)

created_at DATETIME

udpated_at DATETIME

Indexes

smartmats

id INT

room_id INT

ex_smartmat_id INT

created_at DATETIME

udpated_at DATETIME

Indexes

items

id INT

room_id INT

smartmat_id INT

name VARCHAR(45)

stock INT

created_at DATETIME

updated_at DATETIME

Indexes

users

id INT

name VARCHAR(45)

created_at DATETIME

Indexes

logs

id INT

item_id INT

user_id INT

stock INT

created_at DATETIME

Indexes

Fig. 6.3. The ideal table structure.

26

7 まとめ

7.1 研究の成果

本研究では、医療資源管理のためのスマートマットを用いた在庫管理システムを試作した。この
システムは病院内での利用を想定しており、医療資源の数である 14000品目を扱うデータベースが
正常に動作することを確認できた。また、同時アクセスについても、問題のないレベルでの運用が
できることを確認できた。

7.2 今後の課題

本システムの課題としては、自ホストに対して HTTPリクエストを行っていることが挙げられ
る。実際にシステムを利用する際には、そのシステムのネットワークにファイアウォールが設置さ
れているなどする場合がある。このとき、自ホストへの HTTPリクエストは、正常に処理されな
い可能性がある。このため、自ホストへリクエストをおこなっている部分を、クラスとして定義す
るなどの対策が必要であると考えられる。

27

参考文献
[1] 病院の薬、薬局の薬 | おくすり Q&A│すこやかコンパス│住友ファーマ株式会社

https://www.sumitomo-pharma.co.jp/sukoyaka/qanda/vol5.html
(Accessed on 2022/12/3)

[2] 医療機器データベース　トップページ
https://www.kikidb.jp/index.cfm
(Accessed on 2022/12/3)

[3] 意外と大きい!?薬剤廃棄ロスが経営に与える影響 | 薬局経営 NAVI
https://yk-navi.jp/column/480/
(Accessed on 2023/2/12)

[4] Docker入門（第一回）〜Dockerとは何か、何が良いのか〜 | さくらのナレッジ
https://knowledge.sakura.ad.jp/13265/?gclid=CjwKCAiApvebBhAvEiwAe7mHSArv6l2-
YiThhFsgp1emf2pgkAlkrwSrWo0JO6hlYeS7v4hQN7mclhoCIE0QAvD_BwE
(Accessed on 2022/11/23)

[5] Docker入門（第六回）〜Docker Compose〜 | さくらのナレッジ
https://knowledge.sakura.ad.jp/16862/
(Accessed on 2022/11/27)

[6] RFIDとは？ ｜自動認識の技術情報｜デンソーウェーブ
https://www.denso-wave.com/ja/adcd/fundamental/rfid/rfid/index.html
(Accessed on 2023/2/13)

[7] RFIDとは？ 基礎から応用までわかりやすく解説｜ RFID Room
https://rfid.tss21.co.jp/knowledge/whatsrfid/
(Accessed on 2023/2/13)

[8] ソニー株式会社 | FeliCa | FeliCaとは | FeliCaってなに？
https://www.sony.co.jp/Products/felica/about/
(Accessed on 2023/2/13)

[9] Python（パイソン）とは？ ｜注目のプログラミング言語を紹介 | コエテコキャンパス
https://coeteco.jp/articles/10661
(Accessed on 2023/2/13)

[10] Pythonとは？ 大人気プログラミング言語のメリットや活用事例をご紹介
https://www.internetacademy.jp/it/programming/programming-basic/what-is-
python.html
(Accessed on 2023/2/13)

[11] 今さら聞けない！ HTMLとは【初心者向け】| TechAcademyマガジン
https://magazine.techacademy.jp/magazine/4843

28

(Accessed on 2022/11/22)
[12] HTMLとは？ 初心者向けにタグの種類と使い方の基本を解説！ | Udemy メディア

https://udemy.benesse.co.jp/design/web-design/what-is-html.html
(Accessed on 2022/11/22)

[13] Bootstrap とは？ 特徴や種類、メリット・デメリットを解説｜レンタルサーバーナレッジ
https://knowledge.cpi.ad.jp/cms/bootstrap/
(Accessed on 2023/2/13)

[14] Bootstrapとは？ 意味や特徴、種類を徹底解説 | 侍エンジニアブログ
https://www.sejuku.net/blog/7407
(Accessed on 2023/2/13)

[15] jQuery とは｜ Web デザイン・Web デザイナー専攻｜デジタルハリウッドの専門スクール
（学校）
https://school.dhw.co.jp/course/web/contents/w_jQuery.html
(Accessed on 2023/2/13)

[16]【初心者向け】jQuery とは｜メリット・デメリットから記述方法まで解説 | 株式会社パソナ
（旧パソナテック）｜ ITエンジニア・ものづくりエンジニアの求人情報・転職情報
https://www.pasonatech.co.jp/workstyle/column/detail.html?p=2570
(Accessed on 2023/2/13)

[17] PHPとは？ 基礎知識、できることを初心者にもわかりやすく解説します - カゴヤのサーバー
研究室
https://www.kagoya.jp/howto/it-glossary/web/php/
(Accessed on 2023/2/13)

[18] PHPとは何かわかりやすく解説！ できることや需要・将来性も紹介 | 侍エンジニアブログ
https://www.sejuku.net/blog/4097
(Accessed on 2023/2/13)

[19] データベースとは | クラウド・データセンター用語集／ IDCフロンティア
https://www.idcf.jp/words/database.html
(Accessed on 2023/2/13)

[20] データベースとは？ 基礎知識を初心者にわかりやすく解説！ ｜ ITトレンド
https://it-trend.jp/database/article/89-0065
(Accessed on 2023/2/13)

[21] SQLとは？ データベース言語の基礎知識をわかりやすく解説！ - システム開発のプロが発注
成功を手助けする【発注ラウンジ】
https://hnavi.co.jp/knowledge/blog/sql/
(Accessed on 2023/2/13)

[22]【SQL入門】データベース言語の基礎知識を学んでMySQ…｜ Udemy メディア
https://udemy.benesse.co.jp/development/system/intro-sql.html

29

(Accessed on 2023/2/13)
[23] APIとは？ 意味やメリット、使い方を世界一わかりやすく解説 | 侍エンジニアブログ

https://www.sejuku.net/blog/7087
(Accessed on 2023/2/13)

[24] 今さら聞けない JSONとは？ 表記形式や使い方をサンプル付きで解説！ | プログラミングを
学ぶならトレノキャンプ（TRAINOCAMP）
https://camp.trainocate.co.jp/magazine/whats-json/
(Accessed on 2023/2/13)

[25] JSONとは？ データフォーマット（データ形式）について学ぼう！
https://products.sint.co.jp/topsic/blog/json
(Accessed on 2023/2/13)

30

謝辞
本論文は筆者である山中が国立岐阜工業高等専門学校電気情報工学科に在籍中の研究成果をまと

めたものである。本研究は多くの方々のご指導、ご協力のもと行われており、その方々の助力無く
して本研究は成立しなかった。ここに深く感謝申し上げる。
本研究の指導教員である田島孝治准教授には、研究の提案からその詳細、執筆活動に渡るまで、

多くの助言と細やかなご指導をいただいた。また、研究、開発に必要な設備、環境を提供していた
だき、より良い方向へと進むよう、多くの助言をいただいた。ここに心から感謝の意を示す。
本論文の副査である出口利憲教授には論文を精読していただき、細やかなご指導をいただいた。

ここに深く感謝の意を示す。
同研究室に配属された黒﨑椎真氏、戸松準貴氏、西倉有晟氏の 3人に加え、本研究室の先輩であ

る苫米地康太氏、西口丈二氏、堀壮吾氏には本研究に関して様々な助言をいただいた。ここに深く
感謝の意を示す。

31

